Ultra-Heavy Dark Matter Search with Electron Microscopy of Geological Quartz

Erwin Tanin

Johns Hopkins University

2105.03998

Theorists: A. Mathur, S. Rajendran, E. H. Tanin

Experimentalists: R. Ebadi, M. C. Marshall, A. Ravi, R. Trubko, D. F. Phillips, R. L. Walsworth

Geologists: N. D. Tailby, R. R. Fu

Dark Matter

 $\rho_{\rm DM} \sim 0.2~{\rm GeV/cm^3}$

 $v_{\rm DM} \sim 10^{-3}$

weak self-interactions

→ light elementary particles, e.g. WIMPs

strong self-interactions

→ ultraheavy composite blobs $(m_{\rm DM} \sim \text{kg} \sim 10^{27} \text{GeV})$

Dark Matter

weak self-interactions

→ light elementary particles, e.g. WIMPs

strong self-interactions

→ ultraheavy composite blobs $(m_{\rm DM} \sim \text{kg} \sim 10^{27} \text{GeV})$

How to directly detect?

rare transit

of events
$$\sim \frac{\rho_{\rm DM}}{m_{\rm DM}} v_{\rm DM} T_{\rm exp} A_{\rm exp}$$

but each very powerful

$$m_{\rm DM}v_{\rm DM}^2\uparrow$$
, $\sigma_{\rm DM}\uparrow$

Dark Matter

 $ho_{\rm DM} \sim 0.2 \ {\rm GeV/cm^3}$ $v_{\rm DM} \sim 10^{-3}$

$$v_{\rm DM} \sim 10^{-3}$$

weak self-interactions

→ light elementary particles, e.g. WIMPs

strong self-interactions

→ ultraheavy composite blobs $(m_{\rm DM} \sim {\rm kg} \sim 10^{27} {\rm GeV})$

How to directly detect?

sensitivity not an issue, one transit is enough

of events > O(1) sets max m_{DM}

strategy: maximize $T_{\text{exp}}A_{\text{exp}}$

Ancient:
$$10^9 \text{yr} \times (10 \text{ m})^2 = 10 \text{ yr} \times (100 \text{ km})^2 \longrightarrow m_{\text{DM}} < 100 \text{ kg}$$

Some tracks preserved

Ancient:
$$10^9 \text{yr} \times (10 \text{ m})^2 = 10 \text{ yr} \times (100 \text{ km})^2 \longrightarrow m_{\text{DM}} < 100 \text{ kg}$$

Some tracks preserved

Ancient:
$$10^9 \text{yr} \times (10 \text{ m})^2 = 10 \text{ yr} \times (100 \text{ km})^2 \longrightarrow m_{DM} < 100 \text{ kg}$$

Some tracks preserved

Long, very straight, microscopic diameter tracks

Ancient:
$$10^9 \text{yr} \times (10 \text{ m})^2 = 10 \text{ yr} \times (100 \text{ km})^2 \longrightarrow m_{DM} < 100 \text{ kg}$$

Some tracks preserved

Long, very straight, microscopic diameter tracks massive, hard to stop

Ancient:
$$10^9 \text{yr} \times (10 \text{ m})^2 = 10 \text{ yr} \times (100 \text{ km})^2 \longrightarrow m_{DM} < 100 \text{ kg}$$

Some tracks preserved

Long, very straight, microscopic diameter tracks

probe more parameter space

The Idea

Real-time: $10 \text{ yr} \times (100 \text{ m})^2$

Ancient:
$$10^9 \text{yr} \times (10 \text{ m})^2 = 10 \text{ yr} \times (100 \text{ km})^2 \longrightarrow m_{DM} < 100 \text{ kg}$$

Some tracks preserved

Which rock?

Long, very straight, microscopic diameter tracks

How to scan?

Search for Supermassive Magnetic Monopoles Using Mica Crystals

P. B. Price and M. H. Salamon

Department of Physics, University of California, Berkeley, California 94720 (Received 18 November 1985)

- Long tracks in mica
- ♦ Acid etching + optical microscopy
- $T_{\exp}A_{\exp} = Gyr \times 0.1 \text{ m}^2$
- $* m_{\rm DM} < 10^{26} {\rm GeV}$

Acevedo, Bramante, Goodman 2021 [2105.06473]

Scan Quartz with SEM-CL

SEM-CL

- Scanning Electron Microscopy (SEM)
- Cathodoluminescence (CL)
- \Rightarrow μ m resolution

Quartz

- \diamond Crystalline form of silica, melts at $T \sim eV$
- Passing blob leaves behind amorphous silica
- \diamond Old $(T_{\text{exp}} \uparrow)$, abundant $(A_{\text{exp}} \uparrow)$

Our signal is difficult to fake

- Our signal
 - > μ m radius, straight, macroscopically long (1D)
- ♦ Geological fractures
 - > macroscopic (2D or 3D)
- ♦ Cosmic rays, neutrinos
 - > scattered little dots (0D)
- Uranium fission tracks
 - > $10 \mu \text{m} \text{ balls (0D)}$

Geometric rejection

Jack Hills, Australia

This took 5 s/mm² (the bottleneck)

reach: $m_{\rm DM} < 100 \ \rm kg$

melting condition: $E_{kick} > eV$

Summary

- \diamond Ultraheavy (\sim kg) dark matter search needs high exposure (high $T_{\rm exp}A_{\rm exp}$)
- ♦ Idea: scan T_{exp} ~ Gyr old quartz with SEM-CL
- Sensitive to any dark matter that leaves detectable long tracks in quartz
- ♦ We gave one example model that does that, and there are likely many more
- Worth doing anyway, for geology purposes

Thank You

QCD-like theory with fermionic blobs

Repulsive Yukawa coupling with SM nucleons

$$\mathcal{L} = \cdots - \frac{1}{2} m_{\phi}^2 \phi^2 - g_{\chi} \phi \chi \bar{\chi} + g_n \phi \bar{n} n$$

Interesting regime: $\Lambda_{\chi}^{-1} \ll m_{\phi}^{-1} \ll R$

Nucleons receive an effective mass inside the blob

$$g_n \langle \phi \rangle \sim \frac{g_n g_{\chi}}{m_{\phi}^{-1}} \left(\frac{m_{\phi}^{-1}}{\Lambda_{\chi}^{-1}} \right)^3 = \text{constant}, \qquad r < R$$

Example Model

Moving potential hill, $V_0 = g_n \langle \phi \rangle$

$$E_{\rm kick} \sim 10 \text{ keV min} \left[1, \left(\frac{V_0}{10 \text{ keV}} \right)^2 \right]$$

$$\frac{dE}{dx} \sim \frac{E_{\text{kick}}}{5 \text{ Ang}} \left(\frac{R}{\text{Ang}}\right)^2$$

Example Model Sensitivity

Future

- ♦ Signal calibration
 - ♦ Create damage tracks artificially (with high-pulsed laser), put under SEM-CL
- ♦ Noise calibration
 - ♦ Check the CL level of natural and synthetic samples with different levels of CL activators
- ♦ Look for long tracks of lattice defects
 - ♦ Sensitive to energy depositions below the melting threshold, can probe DM microphysics

Model-Independent Reach

[ancient mica] 10^{26} GeV $< m_{\rm DM} < 10^{29}$ GeV [O(1) blob transit]

[melting threshold] $eV < E_{kick} < 10 \text{ keV}$ [kinematics]

[melting μ m-radius cylinder] $\frac{\text{MeV}}{\text{Ang}} < \frac{dE}{dx} < 10^{13} \frac{\text{MeV}}{\text{Ang}} \left(\frac{m_{\text{DM}}}{100 \text{ kg}}\right)$ [blob not slowing]